Adaptation in a revised inner-hair cell model.
نویسندگان
چکیده
A revised computational model of the inner-hair cell (IHC) and auditory-nerve (AN) complex was recently presented [Sumner et al., J. Acoust. Soc. Am. 111, 2178-2188 (2002)]. One key improvement is that the model reproduces the rate-intensity functions of low- (LSR), medium- (MSR), and high-spontaneous rate (HSR) fibers in the guinea-pig. Here we describe the adaptation characteristics of the model, and how they vary with model fiber type. Adaptation of the revised model for a HSR fiber is in line with an earlier version of the model [Meddis and Hewitt, J. Acoust. Soc. Am. 90, 904-917 (1991)]. In guinea-pig, poststimulus time histograms (PSTH) have been found to show less adaptation in LSR fibers. Evidence from chinchilla suggests that this is due to chronic adaptation resulting from short interstimulus intervals, and that fully recovered LSR fibers actually show more adaptation. However, the model is able to account for both variations of PSTH shape when fully recovered from adaptation. Interstimulus interval can also affect recovery in the model. The model is further tested against data previously used to evaluate models of AN adaptation. The tests are (i) recovery from adaptation of spontaneous rate and (ii) the recovery of response to acoustic stimuli ("forward masking"), (iii) the response to stimulus increments and (iv) decrements, and (v) the conservation of transient components. A HSR model fiber performs similarly to the earlier version of the model. However, there is considerable variation in response to increments and decrements between different model fibers.
منابع مشابه
Sensory transduction and adaptation in inner and outer hair cells of the mouse auditory system.
Auditory function in the mammalian inner ear is optimized by collaboration of two classes of sensory cells known as inner and outer hair cells. Outer hair cells amplify and tune sound stimuli that are transduced and transmitted by inner hair cells. Although they subserve distinct functions, they share a number of common properties. Here we compare the properties of mechanotransduction and adapt...
متن کاملA small analog VLSI inner hair cell model
In this paper we present a simplified analog VLSI inner hair cell model, which models the main characteristics of the biological inner hair cell, i.e., I ) soil half-wave rectification, 2 ) low-pass filtering at IkHz, and 3) adaptation to sustained input. The main challenge lies in the creation of the long time constant associated with the lkHz low-pass filter and the adaptation. A modified cur...
متن کاملA revised model of the inner-hair cell and auditory-nerve complex.
A revised computational model of the inner-hair cell (IHC) and auditory-nerve (AN) complex is presented and evaluated. Building on previous models, the algorithm is intended as a component for use in more comprehensive models of the auditory periphery. It combines smaller components that aim to be faithful to physiology in so far as is practicable and known. Transduction between cochlear mechan...
متن کاملA phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics.
There is growing evidence that the dynamics of biological systems that appear to be exponential over short time courses are in some cases better described over the long-term by power-law dynamics. A model of rate adaptation at the synapse between inner hair cells and auditory-nerve (AN) fibers that includes both exponential and power-law dynamics is presented here. Exponentially adapting compon...
متن کاملAnalysis of models for the synapse between the inner hair cell and the auditory nerve.
A general mathematical approach was proposed to study phenomenological models of the inner-hair-cell and auditory-nerve (AN) synapse complex. Two models (Meddis, 1986; Westerman and Smith, 1988) were studied using this unified approach. The responses of both models to a constant-intensity stimulus were described mathematically, and the relationship between model parameters and response characte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 113 2 شماره
صفحات -
تاریخ انتشار 2003